An effective synthesis of 4-alkynyl-substituted sydnones

Il'ya A. Cherepanov, Diana D. Bronova, Elena Yu. Balantseva and Valery N. Kalinin*

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 117813 Moscow, Russian Federation. Fax: +7 095 135 5085

3-Phenyl-4-trimethylsilylethynylsydnone has been obtained for the first time, and a preparative method for the exchange of a Me₃Si group by an organic substrate from organohalides in the presence of Pd⁰/Cu¹, Et₃N and Bu_n⁴NF·3H₂O is proposed.

Mesoionic heterocycles, especially sydnones and sydnone imines, are of considerable interest as potentially physiologically-active compounds. The additional introduction of carbo- and/or heterocyclic substituents into sydnones can have a great impact on their biological activity. Previously we have found that 4-cuprio-3-phenylsydnone reacts with organohalides in the presence of Pd⁰ to give cross-coupling products including 4-alkynyl-substituted sydnones. ^{2,3}

In this work we tried to obtain 4-ethynyl-3-phenylsydnone 1, because this compound is usable as a base for the synthesis of different 4-carbo- and 4-heterocyclic derivatives of sydnones

by cycloaddition [3+2] and [4+2] reactions.^{4,5} However, our attempts to synthesize **1** from reactions of 1-bromoacetylene with 4-cuprio-3-phenylsydnone under Pd⁰ or Pd^{II} catalysis conditions have not been successful. This may be due to the rather high acidity of the CH bond in terminal acetylenes.

In this respect, to obtain **1** we have used 1-bromo-2-trimethylsilylacetylene⁶ as the acetylenic compound for the cross-coupling reaction, because it is known that the silicon–carbon bond in acetylenes is easily cleaved by fluorine anion.⁷

Table 1 Palladium-catalysed cross-coupling reaction of 4-ethynyl-3-phenylsydnone (1, in situ) with organohalides.

 $\textit{Reagents and conditions}: i, \; Bu_{1}^{n}NF \cdot 3H_{2}O, \; THF, \; 20 \; ^{\circ}C; \; ii, \\ 5\% \; Pd(PPh_{3})_{4}/5\% \; CuI, \; 4 \; equiv. \; Et_{3}N, \; THF, \; 20 \; ^{\circ}C, \; 2-24 \; h. \; 200 \; h.$

RHal	Reaction time/h	Product	Mp/°C	Yield (%)
1 I—	3	$ \begin{array}{c} Ph \\ N \\ N \\ O \end{array} $ $ C \equiv C \\ O $	133–135 (Lit. data 135.5–137) ³	85
2 I——NO ₂	2	$ \begin{array}{c} \text{Ph} \\ \text{N} \\ \text{N} \\ \text{O} \end{array} $ $ \begin{array}{c} \text{C} \equiv \text{C} \\ \text{O} \end{array} $	159–161	97
3 I—CO ₂ Me	5	$ \begin{array}{c} \text{Ph} \\ \text{N} \\ \text{O} \end{array} $ $ \begin{array}{c} \text{C} \equiv \text{C} \\ \text{O} \end{array} $	150–152	67
4 Br \sim CO ₂ Me	24			0
5 I————————————————————————————————————	5	$Ph \longrightarrow C \equiv C \longrightarrow N = CH \longrightarrow Cl$ $O \longrightarrow O$	141–143	49
6 Br-CH=CH-Ph	22	$ \begin{array}{ccc} \text{Ph} & & \\ \text{N} & & \\ \text{N} & & \\ \text{O} & & \\ \end{array} $	112.5–114	40
7 I————————————————————————————————————	24	$ \begin{array}{cccc} Ph & & \\ N & + & \\ N & O & O^{-} \end{array} $	123–125	26
8 Br	24			0
9 Br—O	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	148–150	47

Scheme 1 Reagents and conditions: i, Pd(PPh₃)₄, THF, 20–60 °C.

Scheme 2 Reagents and conditions: i, 5% Pd(PPh₃)₄, THF, 20 °C; ii, Bu₄ⁿNF·3H₂O.

It has been found that the interaction of 4-cuprio-3-phenylsydnone with 1-bromo-2-trimethylsilylacetylene under Pd^0 catalysis readily results in the formation of the desired 3-phenyl-4-trimethylsilylethynylsydnone – (5-oxido-3-phenyl-4-trimethylsilylethynyl-1,2,3-oxadiazol-3-ium) 2.

Treatment of **2** with $Bu_1^nNF\cdot 3H_2O$ in THF at 0 °C promotes rapid cleavage of the C–SiMe₃ bond and the formation of **1** (HPLC data), but all our attemps to prepare **1** in pure form failed due to its instability.

Terminal acetylenes react with organohalides under Pd^0/Cu^I catalysis and in the presence of bases to afford cross-coupling products. Represented to the action of $Bu_1^aNF\cdot 3H_2O$ also readily engages in this cross-coupling reaction with vinyl-, aryl- and heteroaryl-halides to give 1-substituted-2-(3-phenylsydnon-4-yl)acetylenes. The main results are presented in Table $1.^{\ddagger}$

From Table 1, the palladium-catalysed cross-coupling reaction of 1 with iodoaryls occurs rather fast and in good yields (runs 1–3,5) whereas bromoaryls (runs 4,8) hardly react at all. Bromovinyl (run 6), 2-iodopyrydine (run 7) and 4-bromo-6-methyl-2*H*-pyran-2-one (run 9) form cross-coupling products in moderate yield.

In conclusion, the cross-coupling reactions proposed here are useful as preparative methods for obtaining disubstituted acetylenes where one substituent is a sydnonyl radical.

The authors are very grateful to Dr. O. S. Shilova for the sample of 4-bromo-6-methyl-2*H*-pyran-2-one.

References

- 1 M. Ohta and H. Kato, Non-Benzenoid Aromatics, ed. J. P. Snyder, Academic Press, New York, 1969, p. 117.
- 2 V. N. Kalinin and Fan Min She, *J. Organomet. Chem.*, 1988, 352, C34.
- 3 V. N. Kalinin, D. N. Pashchenko and Fan Min She, Mendeleev Commun., 1992, 60.
- † 5-Oxido-3-phenyl-4-trimethylsilylethynyl-1,2,3-oxadiazo-3-ium **2**: mp 74.5–76.5 °C. Found (%): C 60.45, H 5.46, N 10.38. Calc. (%) for C $_{13}\rm{H}_{14}\rm{N}_{2}\rm{O}_{2}\rm{Si}$: C 60.44, H 5.46, N 10.48. $^{1}\rm{H}$ NMR (δ , ppm, CDCl $_{3}$): 0.20 (s, 9H, SiMe $_{3}$), 7.50–7.70 (m, 3H) and 7.75–7.80 (m, 2H, Ph). IR (ν/\rm{cm}^{-1} , CHCl $_{3}$): 1764 (CO), 1252 and 848 (SiMe $_{3}$).
- [‡] Typical procedure: A solution of Bu_n^aNF·3H₂O (1 mmol) in 15 ml of THF was added dropwise to a stirred mixture of 3-phenyl-4-trimethylsilylethynylsydnone (1 mmol), organohalide (3 mmol), CuI (0.05 mmol), Pd(PPh₃)₄ (0.05 mmol) and Et₃N (4 mmol) in 20 ml of THF. The mixture was stirred 2–24 h (see Table 1) at 20 °C. The solvent was evaporated *in vacuo*, and the product purified by chromatography on silica (eluent CHCl₃) and recrystallisation from CHCl₃–hexane (3:1). All compounds synthesized gave satisfactory analytical and spectroscopic data.

- 4 A. S. Onishenko, *Dienovyi Sintez (The synthesis of dienes)*, Izd. Akad. Nauk SSSR, Moscow, 1963 (in Russian).
- 5 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley-Interscience, New York, 1984.
- J. Miller, Synthesis, 1983, 128.
- 7 W. P. Weber, Silicon Reagents for Organic Synthesis, Springer-Verlag, New York, 1983.
- 8 V. N. Kalinin, Synthesis, 1992, 413.
- 9 R. Rossi, A. Carpita and F. Belina, Organic Preparation and Procedures Int., 1995, 27, 127.

Received: Moscow, 3rd September 1996 Cambridge, 18th January 1997; Com. 6/060741